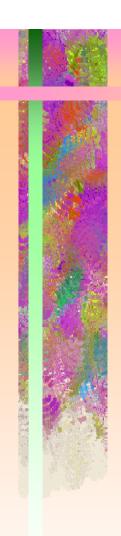


Basic Concepts of Fuzzy Logic

Apparatus of fuzzy logic is built on:

- Fuzzy sets: describe the value of variables
- Linguistic variables: qualitatively and quantitatively described by fuzzy sets
- Possibility distributions: constraints on the value of a linguistic variable
- Fuzzy if-then rules: a knowledge



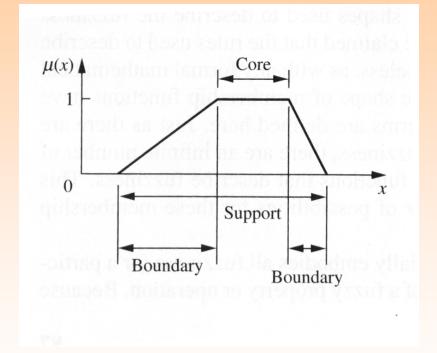
Fuzzy sets

A fuzzy set is a set with a smooth boundary.

A fuzzy set is defined by a functions that maps objects in a domain of concern into their membership value in a set.

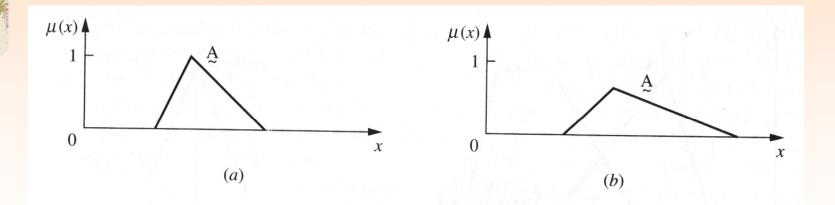
Such a function is called the *membership function*.

- Core: comprises those elements x of the universe such that $\mu_a(x) = 1$.
- **Support**: region of the universe that is characterized by nonzero membership.
- Boundary : boundaries comprise those elements xof the universe such that $0 < \mu_a(x) < 1$



Features of the Membership Function (Cont.)

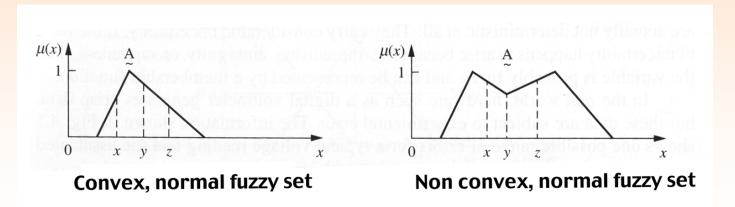
• Normal Fuzzy Set: at least one element x in the universe whose membership value is unity



Fuzzy sets that are normal (a) and subnormal (b).

Features of the Membership Function (Cont.)

 Convex Fuzzy set: membership values are strictly monotonically increasing, or strictly monotonically decreasing, or strictly monotonically increasing then strictly monotonically decreasing with increasing values for elements in the universe.



$$\mu_{a}(y) \geq \min[\mu_{a}(x), \mu_{a}(z)]$$

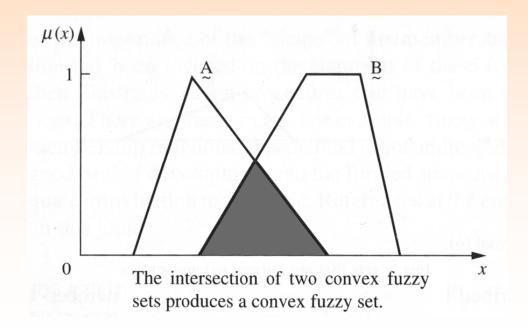
• Cross-over points : μ_a (x) = 0.5

• Height: defined as max $\{\mu_a(x)\}$

Operations on Fuzzy Sets

- Logical connectives:
 - Union
 - A U B = $max(x_a(x), x_b(x))$
 - Intersection
 - A . B = min(χ_a (x), χ_b (x))
 - Complementary
 - A ---> χ_a (x) = 1- χ_a (x)

- Special Property of two convex fuzzy set:
 - for A and B, which are both convex, A. B is also convex.

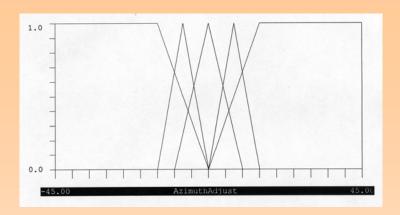


Design Membership Functions

Manual

- Expert knowledge. Interview those who are familiar with the underlying concepts and later adjust. Tuned through a trial-and-error
- Inference
- Statistical techniques (Rank ordering)

Intutition



- Derived from the capacity of humans to develop membership functions through their own innate intelligence and understanding.
- Involves contextual and semantic knowledge about an issue; it can also involve linguistic truth values about this knowledge.

Inference

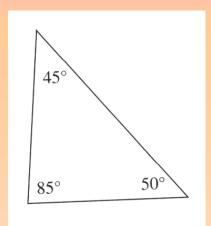
 Use knowledge to perform deductive reasoning, i.e. we wish to deduce or infer a conclusion, given a body of facts and knowledge.

- In the identification of a triangle
 - Let A, B, C be the inner angles of a triangle
 - Where A ≥ B ≥ C
 - Let U be the universe of triangles, i.e.,
 - $U = \{(A,B,C) \mid A \ge B \ge C \ge 0; A + B + C = 180^{\circ}\}$
 - Let 's define a number of geometric shapes
 - I Approximate isosceles triangle
 - R Approximate right triangle
 - IR Approximate isosceles and right triangle
 - E Approximate equilateral triangle
 - T Other triangles

- We can infer membership values for all of these triangle types through the method of inference, because we possess knowledge about geometry that helps us to make the membership assignments.
- For Isosceles,
 - μ_{i} (A,B,C) = 1-1/60* min(A-B,B-C)
 - If A=B OR B=C THEN μ_i (A,B,C) = 1;
 - If A=120°,B=60°, and C =0° THEN μ_{i} (A,B,C) = 0.

- For right triangle,
 - $\square \mu_{R}$ (A,B,C) = 1-1/90* |A-90°|
 - If A=90° THEN μ_i (A,B,C) = 1;
 - If A=180° THEN μ_i (A,B,C) = 0.
- For isosceles and right triangle
 - IR = min (I, R)
 - μ_{IR} (A,B,C) = min[μ_{I} (A,B,C), μ_{R} (A,B,C)] = 1 max[1/60min(A-B, B-C), 1/90|A-90|]

- For equilateral triangle
 - $\mu_{\rm F}$ (A,B,C) = 1 1/180* (A-C)
 - When A = B = C then μ_E (A,B,C) = 1, A = 180 then μ_E (A,B,C) = 0
- For all other triangles
 - -T = (I.R.E)' = I'.R'.E' $= min \{1 \mu_I (A,B,C), 1 \mu_R (A,B,C), 1 \mu_E (A,B,C)\}$



Define a specific triangle:

$$\mu_{R} = 0.94$$

$$\mu_{I} = 0.916$$

$$\mu_{\text{IR}} = \textbf{0.916}$$

$$\mu_{E=0.7}$$

$$\mu_{T} = 0.05$$

Rank ordering

- Assessing preferences by a single individual, a committee, a poll, and other opinion methods can be used to assign membership values to a fuzzy variable.
- Preference is determined by pairwise comparisons, and these determine the ordering of the membership.

Rank ordering: Example

	Number who preferred						,	,
	Red	Orange	Yellow	Green	Blue	Total	Percentage	Rank order
Red		517	525	545	661	2,248	22.5	2
Orange	483		841	477	576	2,377	23.8	1
Yellow	475	159		534	614	1,782	17.8	4
Green	455	523	466		643	2,087	20.9	3
Blue	339	524	386	357		1,506	15	5
Total						10,000		

Design Membership Functions

<u>Automatic or Adaptive</u>

- Neural Networks
- **Genetic Algorithms**
- Inductive reasoning
- Gradient search

Will study these techniques later

- Always use parameterizable membership functions. Do not define a membership function point by point.
 - Triangular and Trapezoid membership functions are sufficient for most practical applications!

